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Abstract

Electron beam evaporation of high-purity liquid metals is characterized by vigorous (turbulent) convection in the
melt pool resulting in unwelcome heat losses. This convective motion is exclusively driven by thermocapillary forces.
We exploit this unique feature to measure the Nusselt number in liquid iron for Marangoni numbers up to 108. The
experiments are carried out in a real-to-life test facility for electron beam evaporation. We compare the results of

our investigations with ®ndings of a recent scaling analysis. Moreover, we perform direct numerical simulations
employing a 2D model. The numerical results demonstrate the turbulent character of the ¯ow as well as the
dominance of thermocapillarity over buoyancy. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Electron beam evaporation of metals is an innova-

tive technology increasingly used in industry to pro-

duce very thin (<1 mm) coatings of high purity (cf.

Schiller et al. [1]). In this process, the surface of a

metal ingot is heated by bombardment with a high-

energy electron beam gun. The material melts, forming

a free surface and eventually starting to evaporate.

Fig. 1 shows a principal sketch of the arrangement.

The rising vapor cloud condenses as a thin ®lm on a

rapidly moving substrate located at some distance

above (not shown in Fig. 1). To guarantee a superior

quality of the coating, the melt is typically con®ned in

a water-cooled copper crucible of large aspect ratio R/

H. Water-cooling is necessary to avoid chemical reac-

tions between melt and crucible material.

The strong energy ¯ux from the electron beam (QB

1 50 kW) induces strong temperature gradients along

the free surface and in the interior of the melt. Hence,

the liquid metal is subject to both surface-tension-

driven (thermocapillary) convection (cf. Davis [2]) and

buoyancy-driven convection (cf. Siggia [3]). However,

for the actual arrangement of Fig. 1 (heated from

above, large aspect ratio R/H ), various numerical and

analytical studies show that (turbulent) thermocapillary

convection is the dominant mode of heat transfer, see

e.g. Karcher [4], Pumir and Blumenfeld [5], DebRoy

and Davis [6], Avare [7]. This conclusion is also sup-

ported by our present numerical investigations. The

strong convective heat transfer limits the temperature

rise at the free surface and therefore the thermodyn-
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amic e�ciency of the evaporation process. In typical

applications, only a small portion of about 3% of the

electron beam power input is converted into vapor

energy [1]. The present study therefore aims to contrib-

ute to the physical understanding of the turbulent heat

transfer in purely surface-tension-driven convection at

high Marangoni numbers in a melt heated at its free

surface. Our investigations include real-to-life exper-

iments in a test facility for the evaporation of metals.

The ®ndings shall be compared on a qualitative basis

with predictions of recently proposed scaling analyses

[4,5] for heat transfer in fully developed turbulent ther-

mocapillary convection. Furthermore, we perform

direct numerical simulations of the process to attain a

qualitative picture of the ¯ow features.

The present report is organized as follows. In Sec-

tion 2 we show the governing equations and boundary

conditions of the problem. We also brie¯y recall the

analysis leading to the basic scaling law of heat trans-

fer. In Sections 3 and 4 we present results of our ex-
perimental and numerical investigations, respectively.
Finally, in Section 5 we summarize the main ®ndings.

2. Governing equations and scaling analysis

2.1. Governing equations

Consider the axisymmetric arrangement as sketched

in Fig. 1. The governing equations drawn up below are
derived under the following assumptions:

1. the material inside the crucible is all liquid;

2. the liquid is incompressible and obeys the Boussi-
nesq approximation (cf. Ref. [8]);

3. the e�ect of bouyancy is neglected;

4. the free surface is nondeformable;
5. for reasons of transparency the contributions of

thermal radiation (typically less than 10% [1]) and
evaporation (less than 3%) to the energy balance at

the free surface are not considered.

Within these assumptions the conservation equations
for mass, momentum, and energy in the liquid read as

follows. In vector notation we obtain

r � v � 0, �1a�

�
@

@ t
� �v � r�

�
v � ÿ1

r
rp� ur2v, �1b�

�
@

@ t
� �v � r�

�
T � kr2T: �1c�

Nomenclature

cp heat capacity of liquid
g acceleration of gravity
H height of crucible, characteristic length of

heat transfer
R radius of crucible
Ma Marangoni number

Nu Nusselt number
p pressure
Pr Prandtl number

qB absorbed electron beam power density
QB electron beam power
Q power in coolant, absorbed electron beam

power

r, z axisymmetric coordinates
rB characteristic radius of electron beam
Ra Rayleigh number

S, V free surface area, volume
t time
T temperature

T� averaged surface temperature
TM melting temperature
u, v, w velocity components

v velocity vector
vH horizontal velocity vector

Greek symbols
a coe�cient of thermal expansion
g temperature coe�cient of surface tension
k, kt molecular di�usivity, turbulent di�usivity

l thermal conductivity
n, nt molecular viscosity, turbulent viscosity
r density

Fig. 1. Principle sketch of the arrangement.
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Here the variables of state are the velocity vector v,
the pressure p, and the temperature T. The constant

¯uid properties are the density r, the kinematic vis-
cosity u, and the thermal di�usivity k. Shear stress and
energy balance at the free surface (z=H ) along with

the kinematic condition yield the relations

@vH

@z
� ÿ g

rn
rT at z � H, �2a�

l
@T

@z
� qB�r� � q0 expfÿr2=2r2Bg at z � H, �2b�

w � 0 at z � H: �2c�
Here, g (g>0) is the thermal coe�cient of surface ten-

sion and l is the thermal conductivity of the ¯uid.
Moreover, in Eq. (2b) qB is the power density from the
electron beam absorbed by the liquid metal. It is

assumed that the beam has a Gaussian distribution
with the characteristic radius rB. The set of boundary
conditions is completed by no-slip (v=0), ®xed-tem-
perature (T=TM) conditions at the crucible walls at z

=0 and r=2R.

2.2. Scaling analysis

A detailed analysis leading to the basic scaling law
of turbulent heat transfer in a liquid heated at its free
surface was performed independently by Karcher [4]

and Pumir and Blumenfeld [5]. In the present paper,
we therefore give only a brief summary of this analysis.
We multiply Eqs. (1b,c) by v and T, respectively, and

average over the entire domain. Integrating by parts
and using boundary conditions (Eqs. (2a±c)) we derive
the following equations that describe the steady-state

balance of production of kinetic and thermal energy at
the free surface (S ) and dissipation in the volume (V ):

1

rcp

�
�S �

qBT dS � kt

�
�V �
�rT �2 dV, �3a�

ÿ g
r

�
�S �

vH � rT dS � nt

�
�V �
�r � v�2 dV, �3b�

where vH denotes the horizontal velocity vector. In
fully developed turbulent ¯ow, the di�usivities can be

assumed to be of the eddy type (please note subscript t
in Eqs. (3a,b)). These quantities depend only on the
characteristic macroscopic velocity (u ) and on the

characteristic macroscopic length scale (H, see below)
of the problem; cf. Landau and Lifshitz [9]. A dimen-
sion analysis implies the scaling relations

ktAuH, �4a�

ntAuH: �4b�

To evaluate Eqs. (3) and (4) qualitatively we introduce
the following scales:

rAR, �5a�

zAH, �5b�

SAR2, �5c�

VAHR2, �5d�

TA�q0H�=l, �5e�

uAk=H: �5f�
Note that this scaling accounts for varying aspect

ratios R/H. Therefore, the present approach extends
the analysis of Pumir and Blumenfeld [5], which

assumes that R and H are of the same order of magni-
tude. As the characteristic length scale of the present
heat transfer problem we de®ne the liquid layer height
H. This choice is consistent with the large aspect ratio

R/H of the crucible actually used in the experiments,
cf. Section 3. In this case we can assume that the large
scale ¯ow consists of convection rolls with character-

istic dimension H. This assumption is supported by the
results of our numerical investigations, cf. Fig. 5 in
Section 4. We combine Eqs. (3)±(5) to ®nally obtain

the general scaling law

NuA
�
Ma Pr

H

R

�1=3

: �6�

The dimensionless groups, the Nusselt number Nu, the

Marangoni number Ma, and the Prandtl number Pr
are de®ned as follows:

Nu � Q

Hl�T � ÿ TM� , �7a�

Ma � gQ
rnkl

, �7b�

Pr � n
k
, �7c�

where T� denotes the averaged surface temperature.
Moreover, Q is the power actually absorbed at the free
surface and transported through the layer. This quan-

tity is controlled in experiment. Hence, to evaluate Eq.
(7a) our goal shall be to measure T� for a given value
of Q.
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3. Experiments

The main goal of the present numerical investi-

gations is to determine the dependence of the Nusselt

number on the Marangoni number in parameter

regimes that are not accessible in conventional labora-

tory experiments. The results shall be compared to the

prediction of the scaling analysis, cf. Eq. (6). We focus

on the evaporation of liquid iron (Pr 1 0.01) which is

a material typically used in application [1]. The e�ect

of the aspect ratio on the heat transfer was investi-

gated numerically by Karcher et al. [10].

Fig. 2 shows a schematic view of the experimental

test facility used for the evaporation of metals. The
process requires a high-vacuum environment of p 3
10ÿ4 hPa; cf. Ref. [1]. The test material is iron con®ned

in a cylindrical copper crucible of aspect ratio R/H =

82.5 mm/20 mm. The electron beam gun generates a

maximal power of QB=50 kW. With this actual set-up

we are able to realize Marangoni numbers up to 108.

During the experiments we measure the beam power

QB, the power in the coolant Q (cf. Eqs. (7a,b)), and

the temperature at the inner crucible wall at about half

the height. Moreover, the temperature of the free sur-

face of the molten iron is measured using an infra-red

camera. A pivoting shutter prevents the optical path of

the camera from steaming up. The results of in situ

measurements of the evaporation rate and the surface

movement will be reported elsewhere [11].

Fig. 3 shows the results of a typical experimental

run in which the power of a focused electron beam

(rB=1 cm) is increased from QB=5 up to 50 kW in

increments of 5 kW. The actual increase of QB is car-

ried out after the response signal for Q has leveled out.

We observe that upon increasing QB, the power in the

coolant Q also increases proportionally. The di�erence

between the two powers is mainly caused by back-scat-

tering of electrons (140% for iron, cf. Ref. [1]) at the

surface of the melt. On the other hand, from the signal

of a thermocouple, placed at mid-height of the inner

crucible wall, we conclude that the iron inside the cru-

cible is not completely molten (TM=15368C). Instead,
a melt puddle forms. Furthermore, since the tempera-

ture signal remains almost constant for QB > 25 kW,

we conclude that the puddle does not change its length

for higher heating powers. Moreover, the signal shows

large ¯uctuations in this parameter range. We attribute

this feature to the vigorous convective motion in the

melt. These conclusions are also supported by the

measurements of the surface temperature of the melt

puddle, see the snapshot given in Fig. 4. In this case

the electron beam power is ®xed at QB=40 kW. The

diameter of the melt puddle is about 2/3 of the hori-

zontal dimension of the crucible. The surface tempera-

ture decreases nonuniformly in radial direction from

the hot spot in the center (T = 25008C) to the outer

boundary of the free surface of the puddle (T =

21708C). We conclude that the nonuniform tempera-

ture fall is due to turbulent motion in the melt. As

observed with a video camera, the typical surface vel-

Fig. 2. Schematic view of the test facility for electron beam evaporation of liquid metals.
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ocity is 0.1 m/s. This corresponds well to the observed
dynamic time scale of the isotherms of about 1 s. At

the outer boundary (cf. Fig. 4), the surface tempera-
ture drops within a thin layer to the melting tempera-

ture. This gives rise to the formation of a thermal
boundary layer in this region. The surface of this layer
is covered with slag particles (ferric oxide) having a

di�erent emissivity than the free surface of the melt
pool. Hence, this region cannot be resolved during the
actual measurements. A summary of the experimental
data, showing the dependence of the Nusselt number

on the Marangoni number, is given in Fig. 7.

4. Direct numerical simulations

The main objective of our direct numerical simu-
lations is to obtain more insight into the dynamics of
heat transfer triggered by thermocapillary convection
in a melt heated at its free surface. For the present

computations we therefore make the same assumptions
as in the analysis shown in Section 2. However, the
actual simulations are carried out in a two-dimensional

Cartesian domain rather than in a 3D cylindrical box.
This simpli®cation is necessary to reach the high Mar-
angoni numbers under consideration. Moreover, in

contrast to the analysis we apply free-slip, adiabatic
boundary conditions in lateral direction. Nevertheless,
we think that our 2D approach also permits us to test

Fig. 3. Example of a typical run. The electron beam power QB is increased from 5 to 40 kW in increments of 5 kW. Recorded are

the electron beam power, the power in the coolant Q, and the temperature at the inside of the crucible wall.

Fig. 4. Snapshot with an infrared camera of the surface tem-

perature in an iron melt pool for an electron beam power of

40 kW. Temperatures are given in 8C.
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qualitatively the predictions of the scaling analysis.

The employed code uses a spectral spatial discretiza-

tion with Fourier series in the horizontal r-direction

and a Chebyshev polynomial expansion in the vertical
z-direction; see Ref. [12] for details. Throughout the

simulations we ®x parameters at R/H = 5, Pr = 0.01,

and rB/R=1/16.

Fig. 5 shows snapshots of the temperature ®eld (Fig.
5a) and the vorticity ®eld (Fig. 5b) for Ma = 1.38 �
105, the highest value that was reached in the simu-

lations. Hence, in the simulations the typical Maran-

goni number is two to three orders of magnitude less

than in the experiments. Fig. 5a shows that the iso-

therms are strongly compressed right beneath the

heated part of the surface. This demonstrates that a
thermal boundary layer forms in this region. More-

over, the strong distortion of the isotherms in vertical

direction clearly shows that surface-tension-driven con-

vection strongly increases the heat transfer across the

liquid layer. In particular, the vorticity ®eld (Fig. 5b)

displays that the ¯ow pattern consists of three pairs of

convection rolls that occupy the entire height of the
layer. Due to the Marangoni e�ect, primary vorticity

is produced at the free surface pushing ¯uid in a jet-

like stream from the hot center part to the colder

outer regions. By continuity, this interfacial mass

transport generates an up¯ow right below the hot spot.

On the other hand, the jet ¯ows down the free-slip side

walls but separates at the rigid bottom boundary.
There, secondary vorticity is produced and transported

into the bulk, generating a counter-rotating secondary

convection roll. This separation phenomenon splits the

jet at the free surface and, therefore, limits the inter-

facial temperature drop to the region occupied by the

inner convection roll, cf. Fig. 5a. Please note that the

lateral symmetry in Fig. 5 is sometimes strongly per-
turbed due to symmetry-breaking events occurring

spontaneously in the course of the simulation. The spa-
tio-temporally irregular behavior of the ¯ow can be
viewed in a video sequence at our web page.1 In Fig. 6

we have plotted the Nusselt number according to Eq.
(6a) versus time. The random ¯uctuations in the Nus-
selt number of about 10% indicate that the system is
in a turbulent state. Moreover, the time-averaged value

of Nu = 61.5 supports our earlier conclusion, namely
that in the present problem turbulent thermocapillary
convection is the dominant mode of heat transfer. For

comparison, we have also calculated the Nusselt num-
ber for the case of purely buoyancy-driven convection
for a corresponding Rayleigh number of

Ra=(agQH 2)/(lkn )=107. In this case it turns out that
the Nusselt number is of order one, being only slightly
greater than the value for pure conduction. Please note

that the used temperature scale results in Nu A O(1)
but Nu$1 for the conductive state. The results of our
direct numerical simulations for a series of Marangoni
numbers are summarized in Fig. 7.

5. Conclusions

We have investigated both experimentally and nu-
merically the heat transfer in surface-tension-driven
convection in liquid iron heated at its free surface for

Marangoni numbers typical in electron beam evapor-
ation. The ®ndings are tested and compared qualitat-
ively with results of a scaling analysis which predicts

the law NuAMa 1/3 for turbulent ¯ow. Fig. 7 shows a
summary of our studies. The experiments, performed
in an electron beam evaporator, span the range 2� 107

R Ma R 108. In this range the data yield the depen-
dence NuA Ma 0.3020.06, i.e. the real-to-life test facility
has a reasonable reproducibility of 220%, cf. error

Fig. 5. Direct numerical simulation of two-dimensional Marangoni convection for Ma=1.38� 105, Pr=10ÿ2, R/H=5, and rB/R

= 1/16. The boundary conditions are free-slip, adiabatic side walls and a no-slip, perfectly conducting bottom. Snapshots of the

temperature ®eld (a) and the vorticity ®eld (b).

1 www.tu-dresden.de/mwilr/ik/publ.html.
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bars in Fig. 7. We conclude that the di�erence of

about 10% between the predicted and the measured

exponent is caused by the simplifying assumptions

made in the scaling analysis. For instance, assumptions

(i) and (iv), i.e. that the metal in the crucible is com-

pletely molten and that the free surface remains ¯at,

clearly do not hold in the experiments. On the other

hand, in the direct numerical simulations we are able

to investigate the range 7 � 104 R Ma R 1.4 � 105. In

this range the simulations show a dependence accord-

ing to the relation NuAMa 0.27. We conclude that the

di�erence to the analytical prediction is due to the use

of a 2D model in the computational approach rather

than a 3D one.

Fig. 6. Temporal evolution of the Nusselt number. Parameters are the same as in Fig. 5. The random ¯uctuations show that the

system is in a state of turbulent convection.

Fig. 7. Dependence of the Nusselt number on the Marangoni number. Results of the 2D direct numerical simulations (left curve)

and 3D experiments (right curve). The error bars on the data indicate an experimental reproducibility of 20%.
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